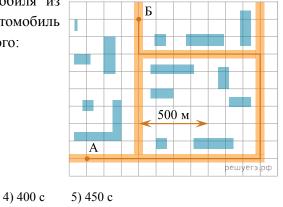

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Электростатическое поле в точке A создаётся двумя разноимёнными точечными электрическими зарядами $q_1 > 0$ и $q_2 < 0$ (см. рис.). Направление результирующей напряжённости электростатического поля в точке A показано на рисунке стрелкой под номером:

2. Установите соответствие между физическими величинами и учёными-физиками, в честь которых названы единицы этих величин.

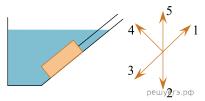

			1) Ом 2) Ампер 3) Тесла	
1) А1 Б2 В3	2) A1 Б3 B2	3) А2 Б1 В3	4) А2 Б3 В1	5) АЗ Б2 В1

3. Если средняя путевая скорость движения автомобиля из пункта A в пункт E $\langle \upsilon \rangle = 37,5$ км/ч (см.рис.), то автомобиль находился в пути в течение промежутка времени Δt равного:

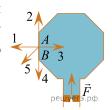
1) 150 c

2) 200 c

Примечание: масштаб указан на карте.



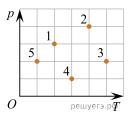
4. На высоте $h = R_3$ (R_3 — радиус Земли) от поверхности Земли на тело действует сила тяготения, модуль которой $F_1 = 24$ Н. Если это тело находится на поверхности Земли, то на него действует сила тяготения, модуль которой F_2 равен:


3) 300 c

1) 48 H 2) 72 H 3) 96 H 4) 216 H 5) 384 H

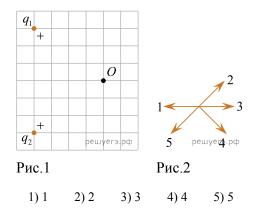
5. Со дна водоёма с помощью троса равномерно поднимают каменную плиту (см. рис.). Направление силы тяжести, действующей на плиту, показано стрелкой, обозначенной цифрой:

6. В нижней части сосуда, заполненного газом, находится скользящий без трения невесомый поршень (см.рис.). Для удержания поршня в равновесии к нему приложена внешняя сила \vec{F} . Направление силы давления газа, действующей на плоскую стенку AB сосуда, указано стрелкой, номер которой:

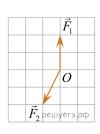

7. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерение	Температура, К	Давление, кПа	Объем, л
1	280	150	15,5
2	310	150	17,2
3	340	150	18,8
4	370	150	20,5
5	400	150	22,2

Такая закономерность характерна для процесса:

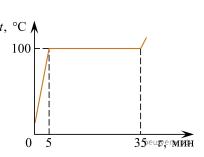

- 1) изохорного
- 2) адиабатного
- 3) изотермического
- 4) изобарного
- 5) циклического

8. На p - T -диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наименьшей температуре T газа, обозначено цифрой:

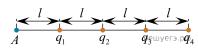


- 1) 1 2) 2 3) 3 4) 4 5) 5
- 9. Если при переходе атома водорода из одного стационарного состояния в другое был испущен квант электромагнитного излучения с длиной волны $\lambda = 1,22 \cdot 10^{-7}\,$ м, то модуль разности энергий $|\Delta E|$ атома водорода в этих стационарных состояниях равен:
 - 1) 13,6 ₉B;
- 2) 10,2 ₃B;
- 3) 8,10 ₃B;
- 4) 4,60 ₃B;
- 5) 3,40 ₉B.

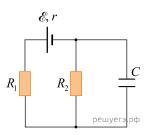
10. Точечные заряды, модули которых $|q_I| = |q_2|$ расположены на одной прямой (рис. 1). Направление напряженности E результирующего электростатического поля, созданного этими зарядами в точке O, на рисунке 2 обозначено цифрой:

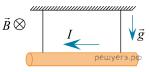


- 11. Парашютист совершил прыжок с высоты $h=600~\mathrm{M}$ над поверхностью Земли без начальной вертикальной скорости. В течение промежутка времени $\Delta t_1=3,0~\mathrm{C}$ парашютист свободно падал, затем парашют раскрылся, и в течение пренебрежимо малого промежутка времени скорость парашютиста уменьшилась. Если дальнейшее снижение парашютиста до момента приземления происходило с постоянной вертикальной скоростью, модуль которой $\upsilon=27~\frac{\mathrm{KM}}{\mathrm{q}}$, то с раскрытым парашютом двигался в течение промежутка времени Δt_2 , равного ... с.
- **12.** На покоящуюся материальную точку O начинают действовать две силы $\vec{F_1}$ и $\vec{F_2}$ (см.рис.), причём модуль первой силы $F_1=8$ Н. Материальная точка останется в состоянии покоя, если к ней приложить третью силу, модуль которой F_3 равен ... **H**.



- **13.** Трактор при вспашке горизонтального участка поля двигался равномерно со скоростью, модуль которой $\upsilon = 7,2$ км/ч, и за промежуток времени $\Delta t = 0,50$ ч израсходовал топливо массой m = 5,4 кг. Если модуль силы тяги трактора F = 15 кH, а коэффициент полезного действия трактора $\eta = 27$ %, то удельная теплота сгорания q топлива равна ... **МДж/кг**.
- **14.** Два тела массами $m_1 = 4,00$ кг и $m_2 = 3,00$ кг, модули скоростей которых одинаковы ($\upsilon_1 = \upsilon_2$), двигались по гладкой горизонтальной поверхности во взаимно перпендикулярных направлениях. Если после столкновения тела движутся как единое целое со скоростью, модуль которой u = 15,0 м/с, то количество теплоты Q, выделившееся при столкновении, равно ... Дж.
- **15.** По трубе, площадь поперечного сечения которой $S=5,0~{\rm cm}^2$, перекачивают идеальный газ ($M=44\cdot 10^{-3}~{\rm кг/моль}$), находящийся под давлением $p=392~{\rm кПa}$ при температуре $T=280~{\rm K}$. Если газ массой $m=40~{\rm kr}$ проходит через поперечное сечение трубы за промежуток $\Delta t=10~{\rm muh}$, то средняя скорость $\langle \upsilon \rangle$ течения газа в трубе равна ... ${\rm M/C}$.
- **16.** Велосипедную камеру, из которой был удалён весь воздух, накачивают с помощью насоса. При каждом ходе поршня насос захватывает из атмосферы воздух объёмом $V_0 = 4,7 \cdot 10^{-5} \text{ м}^3$. Чтобы объём воздуха в камере стал равным $V_1 = 2,2 \cdot 10^{-3} \text{ м}^3$, его давление достигло значения $p_1 = 1,54 \cdot 10^5 \text{ }\Pi\text{a}$, поршень должен сделать число N ходов, равное

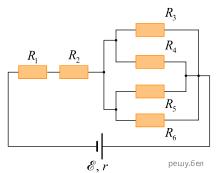

Примечание. Атмосферное давление $p_0=1,0\cdot 10^5~\Pi a$, изменением температуры воздуха при накачивании камеры пренебречь.


18. Четыре точечных заряда $q_1 = 5$ нКл, $q_2 = -5$ нКл, $q_3 = 6,3$ нКл, $q_4 = -20$ нКл расположены в вакууме на одной прямой (см. рис.). Если расстояние между соседними зарядами l = 40 мм, то в точке A, находящейся на этой прямой на расстоянии l от заряда q_1 , модуль напряженности E электростатического поля системы зарядов равен ... $\kappa \mathbf{B}/\mathbf{M}$.

19. Электрическая цепь состоит из источника постоянного тока с ЭДС ε = 120 В, конденсатора ёмкостью C = 0,70 мкФ и двух резисторов, сопротивления которых $R_1 = R_2 = 5,0$ Ом (см. рис.). Если внутреннее сопротивление источника r = 2,0 Ом, то заряд q конденсатора равен ... **мкКл**.

20. В однородном магнитном поле, модуль магнитной индукции которого B=0,50 Тл, на двух невесомых нерастяжимых нитях подвешен в горизональном положении прямой проводник (см.рис.). Линии индукции магнитного поля горизонтальны и перпендикулярны проводнику. После того как по проводнику пошёл ток I=1,0 А, модуль силы натяжения $F_{\rm H}$ каждой нити увеличился в два раза. Если длина проводника l=0,20 м, то его масса m равна ... Γ .

- **21.** На дне сосуда с жидкостью, абсолютный показатель преломления которой n = 1,47, находится точечный источник света. Если площадь круга, в пределах которого возможен выход лучей от источника через поверхность жидкости, S = 750 см², то высота h жидкости в сосуде равна ... **мм**. Ответ округлите до целых.
- **22.** В идеальном колебательном контуре, состоящем из конденсатора емкостью C=10 нФ и катушки индуктивности, происходят свободные электромагнитные колебания с частотой $\nu=8,2$ кГц. Если максимальная сила тока в катушке $I_0=50$ мА, то сему равно максимальное напряжение U_0 на конденсаторе? Ответ приведите в вольтах.
- **23.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1 = 480$ нм дифракционный максимум третьего порядка ($m_1 = 3$) наблюдается под углом θ , то максимум четвертого порядка ($m_2 = 4$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите нанометрах.
- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=80~000$ ядер радиоактивного изотопа золота $^{198}_{79}{
 m Au}$. Если период полураспада этого изотопа $T_{\frac{1}{2}}=2,7~{
 m cyt.}$, то за промежуток времени $\Delta t=8,1~{
 m cyt.}$ распадётся ... тысяч ядер $^{198}_{79}{
 m Au}$.
- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.

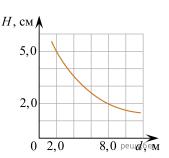

26. Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \,\mathrm{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.


28. Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm JI}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4\ \frac{\mathrm{pa_{\mathcal{A}}}}{\mathrm{c}},$ то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

